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Assumption: Background

SPF record from ‘consultant.com’
v=spf1

ip4:213.165.64.0/23 ip4:74.208.5.64/26 ip4:74.208.122.0/26 ip4:212.227.126.128/25
ip4:212.227.15.0/24 ip4:212.227.17.0/27 ip4:74.208.4.192/26 ip4:82.165.159.0/24
ip4:217.72.207.0/27 -all

Email from ‘paypoint_sanchez@consultant.com’
Received-SPF: fail (google.com: domain of paypoint_sanchez@consultant.com does not
designate 103.10.4.139 as permitted sender) client-ip=103.10.4.139;

Typical usage of SPF
v=spf1 a mx ip4:167.160.22.0/24 -all
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Hypothesis

While snowshoe spammers are hard to detect, but still leave a trace in the DNS.
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Hypothesis

While snowshoe spammers are hard to detect, but still leave a trace in the DNS.

Snowshoe spam + SPF
Many hosts + a DNS record for each host or a long SPF record

Domain with many records or long SPF records

Active DNS measurements are a good way to detect snowshoe spam domains.
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OpenINTEL: Background

• Active DNS measurement platform

• Queries more than 60% of registered domain names (in total more than 206 million)
• A
• AAAA
• MX
• NS
• …

• Every 24 hours a measurement is started
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OpenINTEL: Datasets & Features

37 features

• Simple: number of MX addresses
• Complex: number of IP addresses inside an SPF record

These features are not computed for every domain in OpenINTEL.
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OpenINTEL: Long Tail Analysis

11



Machine Learning
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Machine Learning: 12 algorithms

We have trained and evaluated 12 Machine Learning algorithms.

• Training dataset from domains on the long tail which appear in known blacklists.

The performance of each classifier is compared based on the precision metric.

Precision =
True Positives

True Positives+ False Positives

Selected the ‘AdaBoost’ classifier as our classifier of choice, since it had the highest
precision (98% with a FPR of 1%).
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Realtime Blackhole List (RBL)
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SURFnet
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Methodology: Recap

Active DNS measurements of more than 60% of registered domain names forms the
source of our data. We filter out large domains via the Long Tail Analysis.

We have selected the AdaBoost classifier as our classifier of choice, since it had the
highest precision metric.

The results of our daily detections are stored in an RBL.

We have evaluated the RBL in SURFmailfilter.
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Distinction between two types
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Example

Domain A records MX records

(ham) google.com 1 5

(spam) giftiedan.com 61 1
(spam) twirlmore.com 1 253
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RBL comparison (2 month period)
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RBL comparison (9 month period)
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SURFnet evaluation
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SURFnet evaluation

Δt < 2 days

• 45% of received emails fall in this category
• 18% of observed domains fall in this category
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SURFnet evaluation

Δt ≥ 2 days

• 17% of received emails fall in this category
• 26% of observed domains fall in this category
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SURFnet evaluation

?
domain not on existing blacklist yet

• 38% of received emails fall in this category
• 57% of observed domains fall in this category
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SURFnet evaluation

• 41% of emails were received in the purple areas
• 59% of these emails have not been marked as spam
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SURFnet evaluation
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Conclusion

Using active DNS and by applying machine learning we are able to detect snowshoe
spam domains.

We are able to detect domains from 2 to 180 days in advance when compared to other
blacklists.

This time advantage translates into additional email being marked as spam.

Emails which would otherwise bypass the email filter.

After the evaluation period, SURFnet has deployed our RBL in production.
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Thank you & questions

Thank you for listening1.

Are there any questions?

1Images are from Pixabay and Wikimedia
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