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Introduction



Who am I

• Ph.D. student from the University of Twente
• System administrator @SNT
(ftp.nl.debian.org/ftp.snt.utwente.nl?)

• First FIRST conference

Contact details

tide-project.nl
o.i.vandertoorn@utwente.nl
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Introduction

Is there a better way?

• Typically reactive detection approaches, or as it happens…
• Based on passive measurement
• Proof of suspicious activity is required
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We propose

Proactive threat detection!

• Transition towards proactive security
• Use active measurement to pick up on clues of upcoming attacks
• Proactive threat detection gives an early warning
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Why do we propose this?

We want to improve attack detection:

• Proactive threat detection gives us, the defenders, a better chance against attacks
• In the field of DNS this approach works, more on this later

The advantages of an proactive approach are:

• Unbiased towards your own network (depends on the underlaying measurement)
• Possible time advantage (alert before the attack happens)
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What do we need to do proactive threat detection?

Three components:

• Data from active measurements (DNS, ICMP, etc.)
• Knowledge about what you are measuring (what sets the abnormal apart from the
normal?)

• Ability to use the detection results
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Use cases

Use case Does proactive security work?

Snowshoe spam domains Yes!
DDoS domains Maybe
DNS TXT records Maybe
Combo-squat domains No

7



Use cases

Use case Does proactive security work?

Snowshoe spam domains Yes!

DDoS domains Maybe
DNS TXT records Maybe
Combo-squat domains No

7



Use cases

Use case Does proactive security work?

Snowshoe spam domains Yes!
DDoS domains Maybe

DNS TXT records Maybe
Combo-squat domains No

7



Use cases

Use case Does proactive security work?

Snowshoe spam domains Yes!
DDoS domains Maybe
DNS TXT records Maybe

Combo-squat domains No

7



Use cases

Use case Does proactive security work?

Snowshoe spam domains Yes!
DDoS domains Maybe
DNS TXT records Maybe
Combo-squat domains No

7



OpenINTEL: How we measure

• OpenINTEL performs an active measurement, sending a fixed set of queries for all
covered domains once every 24 hours

• We do this at scale, covering over 216 million domains per day:
• gTLDs:
.com, .net, .org, .info, .mobi, .aero, .asia, .name, .biz, .gov
+ almost 1200 “new” gTLDs (.xxx, .xyz, .amsterdam, .berlin, ...)

• ccTLDs:
.nl, .se, .nu, .ca, .fi, .at, .dk, .ru, .рф, .us, <your ccTLD here?>
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Use case: Snowshoe spam



Snowshoe Spam
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Snowshoe spam: Hypothesis

While snowshoe spammers are hard to detect, but still leave a trace in the DNS.
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Snowshoe spam: Hypothesis

While snowshoe spammers are hard to detect, but still leave a trace in the DNS.

Snowshoe spam + SPF
Many hosts + a DNS record for each host or a long SPF record

Domain with many records or long SPF records

Active DNS measurements are a good way to detect snowshoe spam domains.
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Snowshoe spam: Methodology

11

OpenINTEL
(DNS data source)

Machine Learning
(processing)

Realtime Blackhole List
(storage)

SURFnet
(validation)



Snowshoe spam: Datasets & Features

37 features

• Simple: number of MX addresses
• Complex: number of IP addresses inside an SPF record

These features are not computed for every domain in OpenINTEL.
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Snowshoe spam: Long Tail Analysis
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Snowshoe spam: Methodology
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OpenINTEL
(DNS data source)

Machine Learning
(processing)

Realtime Blackhole List
(storage)

SURFnet
(validation)



Snowshoe spam: Results
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Snowshoe spam: Example

Domain A records MX records

(ham) google.com 1 5

(spam) giftiedan.com 61 1
(spam) twirlmore.com 1 253
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RBL comparison (2 month period)
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RBL comparison (9 month period)
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SURFnet evaluation
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SURFnet evaluation

Δt < 2 days

• 45% of received emails fall in this category
• 18% of observed domains fall in this category
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SURFnet evaluation

Δt ≥ 2 days

• 17% of received emails fall in this category
• 26% of observed domains fall in this category

20

2017-05-24 2017-06-23 2017-07-23
Observation dates

daadzgam.com
realdrippy.com

coachspoke.com
stillscratch.com
homerope.com

quittradition.comD
om

ai
n 

na
m

es

Blacklisted
Detected



SURFnet evaluation

?
domain not on existing blacklist yet

• 38% of received emails fall in this category
• 57% of observed domains fall in this category
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SURFnet evaluation

• 41% of emails were received in the purple areas
• 59% of these emails have not been marked as spam
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Use case: DDoS domains



DDoS domains

In DDoS attacks the amplification factor is important.

Domains crafted for DDoS attacks typically have:

• Many records
• Long (TXT) records
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Lifetime of a DDoS domain

Possible methodology could be:

1. Filter domains with more than average number of records, or longer than average
TXT record

2. Gather the records for the past X days
3. Determine trend lines
4. Predict the size of the domain, say, ten days from now
5. Flag the domain if the predicted size is above a certain threshold
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Use case: DNS TXT records



DNS TXT records

• Majority of TXT records are related to email (~70%)
• 1.2% falls in the ‘other’ category
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DNS TXT records

One of the hightlights of this ‘other’ category is single character records.

• More than 278K TXT records consisting of a single charcter
• Majority contains a ~
• Almost all of these domains are hosted in the same AS
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DNS TXT records
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DNS TXT records

Are these records useful for threat detection?

• Generally, no
• The ‘~’; case could be an identifier for domains from a specific AS

26



Use case: Combo-squat domains



Combo-squat: What is a combo-squat domain?

Many types of squatting domains:

Type Example (target: utwente.nl)

Typosquatting utwent.nl
Combosquatting utwente-login.nl
Bitsquatting utwenpe.nl
Homograph-Based squatting utvvente.nl
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Combo-squat: A general approach?

We started out by developing a general machine-learning based detection model.

Feeding the detection model a list of trademarks worked a lot better!

Trademark Number of domains

Apple 8751
Paypal 1241
Microsoft 711
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Combo-squat: The problems with a generic approach

However, a larger problem is the life time of a combosquat domain.
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Use cases

Where it works:

• Snowshoe spam domains

Where it might work:

• DDoS Domains
• Malicious TXT records

Where it doesn’t work:

• Combo-squat domains
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Reflection



Reflection

What have we learned from these use cases?

• The data needs to contain hints
• This approach works for relatively long setup times
(in our case >1d)
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Improvement?

We realize that our solution is not perfect.
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Improvement?

We think the “ultimate” solution is to combine passive and active measurements.

Use proactive threat detection to prime passive approaches.
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Conclusion



Conclusion

We should move towards proactive threat detection.

• Pick up on clues of an upcoming attack
• Look beyond your own network

Use the early warning from these methods to feed passive detection approaches.

• Combine the high level of detail of passive measurements with the time advantage
from active measurements
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from active measurements
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Future work



Future work

• Research other areas of attack:
• DDoS domains
• C&C domains
• etc.

• Collaborate with pDNS @ CERT.at
• Are there more benefits of combining passive and active (DNS) measurements?
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Thank you

Thank you for listening!

Any questions?

Contact details

tide-project.nl
o.i.vandertoorn@utwente.nl
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